Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 12(10)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37891908

RESUMEN

An industry listed as one of the largest globally is the cosmetic industry. In recent years, this industry has shown growing interest in the application of natural ingredients providing advanced properties to cosmetic creams such as moisturizing, antioxidant, sun-protecting and antimicrobial effects. In this context, the present study concerns the production of cosmetic emulsions containing hippophae oil obtained via the methods of extraction, hydro-distillation and maceration using sunflower oil as the carrier oil. Firstly, an IR-ATR analysis was performed showing that the oils prepared were close to those commercially obtained. Then, the stability of the emulsions was tested over a time period of four months through measuring their pH and viscosity values with positive outcomes, and their antioxidant ability was also measured using the DPPH method. The latter one showed that hippophae oil greatly improves the antioxidant capacity. Moreover, based on the fact that sea buckthorn contains carotenoids, the SPF value of the emulsions was determined. The results showed that the addition of hippophae oil to the emulsions gave higher absorption in UV-Vis, thus higher SPF values. Py-GC/MS analysis was used to identify decomposition compounds in the produced oils. Among those, valuable compounds such as Ω-6, Ω-7 and Ω-9 fatty acids and many aldehydes were found by the decomposition of the oils.

2.
Molecules ; 27(2)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35056660

RESUMEN

Functional groups in a monomer molecule usually play an important role during polymerization by enhancing or decreasing the reaction rate due to the possible formation of side bonds. The situation becomes more complicated when polymerization takes place in the presence of graphene oxide since it also includes functional groups in its surface. Aiming to explore the role of functional groups on polymerization rate, the in situ bulk radical polymerization of hydroxyethyl acrylate (HEA) in the presence or not of graphene oxide was investigated. Differential scanning calorimetry was used to continuously record the reaction rate under both isothermal and non-isothermal conditions. Simple kinetic models and isoconversional analysis were used to estimate the variation of the overall activation energy with the monomer conversion. It was found that during isothermal experiments, the formation of both inter- and intra-chain hydrogen bonds between the monomer and polymer molecules results in slower polymerization of neat HEA with higher overall activation energy compared to that estimated in the presence of GO. The presence of GO results in a dissociation of hydrogen bonds between monomer and polymer molecules and, thus, to higher reaction rates. Isoconversional methods employed during non-isothermal experiments revealed that the presence of GO results in higher overall activation energy due to the reaction of more functional groups on the surface of GO with the hydroxyl and carbonyl groups of the monomer and polymer molecules, together with the reaction of primary initiator radicals with the surface hydroxyl groups in GO.

3.
Nanomaterials (Basel) ; 11(2)2021 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-33668423

RESUMEN

The great concern about the use of hazardous additives in food packaging materials has shown the way to new bio-based materials, such as nanoclays incorporating bioactive essential oils (EO). One of the still unresolved issues is the proper incorporation of these materials into a polymeric matrix. The in situ polymerization seems to be a promising technique, not requiring high temperatures or toxic solvents. Therefore, in this study, the bulk radical polymerization of styrene was investigated in the presence of sodium montmorillonite (NaMMT) and organo-modified montmorillonite (orgMMT) including thyme (TO), oregano (OO), and basil (BO) essential oil. It was found that the hydroxyl groups present in the main ingredients of TO and OO may participate in side retardation reactions leading to lower polymerization rates (measured gravimetrically by the variation of monomer conversion with time) accompanied by higher polymer average molecular weight (measured via GPC). The use of BO did not seem to affect significantly the polymerization kinetics and polymer MWD. These results were verified from independent experiments using model compounds, thymol, carvacrol and estragol instead of the clays. Partially intercalated structures were revealed from XRD scans. The glass transition temperature (from DSC) and the thermal stability (from TGA) of the nanocomposites formed were slightly increased from 95 to 98 °C and from 435 to 445 °C, respectively. Finally, better dispersion was observed when orgMMT was added instead of NaMMT.

4.
Polymers (Basel) ; 11(6)2019 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-31167490

RESUMEN

Nanocomposite materials based on copolymers of styrene and n-butyl methacrylate with either graphene oxide (GO) or functionalized graphene oxide (F-GO) were synthesized using the in-situ bulk radical copolymerization technique. Reaction kinetics was studied both experimentally and theoretically using a detailed kinetic model also taking into account the effect of diffusion-controlled phenomena on the reaction kinetic rate constants. It was found that the presence of GO results in lower polymerization rates accompanied by the synthesis of copolymers having higher average molecular weights. In contrast, the presence of F-GO did not seem to significantly alter the conversion vs time curves, whereas it results in slightly lower average molecular weights. The first observation was attributed to side reactions of the initiator primary radicals with the hydroxyl groups on the surface of GO, resulting in lower initiator efficiency, whereas the second to grafted structures formed from copolymer macromolecules on the F-GO surface. The copolymerization model predictions including MWD data were found to be in satisfactory agreement with the experimental data. At least four adjustable parameters were employed and their best-fit values were provided.

5.
Polymers (Basel) ; 9(9)2017 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-30965738

RESUMEN

The synthesis of nanocomposite materials based on poly(methyl methacrylate) and graphene oxide (GO) is presented using the in situ polymerization technique, starting from methyl methacrylate, graphite oxide, and an initiator, and carried out either with (solution) or without (bulk) in the presence of a suitable solvent. Reaction kinetics was followed gravimetrically and the appropriate characterization of the products took place using several experimental techniques. X-ray diffraction (XRD) data showed that graphite oxide had been transformed to graphene oxide during polymerization, whereas FTIR spectra revealed no significant interactions between the polymer matrix and GO. It appears that during polymerization, the initiator efficiency was reduced by the presence of GO, resulting in a reduction of the reaction rate and a slight increase in the average molecular weight of the polymer formed, measured by gel permeation chromatography (GPC), along with an increase in the glass transition temperature obtained from differential scanning calorimetry (DSC). The presence of the solvent results in the suppression of the gel-effect in the reaction rate curves, the synthesis of polymers with lower average molecular weights and polydispersities of the Molecular Weight Distribution, and lower glass transition temperatures. Finally, from thermogravimetric analysis (TG), it was verified that the presence of GO slightly enhances the thermal stability of the nano-hybrids formed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...